
 

Secure PostgreSQL 
Deployments

JDCon-East 2010
Philadelphia, PA

Magnus Hagander
Redpill Linpro AB



 

There's much to security
● Identify the threats
● Apply the correct measures

– Don't do things just because you can



 

Not in this talk
● Application security
● Data Access Control
● Data Encryption
● etc
● etc



 

Definitely not in this talk
● Unix vs Windows
● Linux vs BSD
● SELinux/SEPostgreSQL
● Any other religion



 

In this talk!
● Authentication methods
● Connection security



 

Authentication methods
● How do we determine who the 

user is
● When do we determine who the 

user is



 

pg_hba.conf
● Lets you use different auth 

methods from different clients
● Not just limited to 

username/password
● For convenience or security
● Internal or external



 

pg_hba.conf

local all all trust
host all all 127.0.0.1/32 trust
host webdb webuser 10.0.0.0/24 md5
host all @dba 192.168.0.0/24 gss



 

Trust Authentication
● Any user can be anyone he/she 

claims to be!



 

Trust Authentication
● Any user can be anyone he/she 

claims to be!
● Anyone think this is a bad idea?



 

Username/password
● Normally, use md5 method

– crypt has been removed, avoid plaintext

● What everybody does
● What everybody expects



 

LDAP authentication
● To the client, username/password
● Backend verification is off-loaded 

to directory server
● Common in enterprise 

deployments
● Password policies, expiry, etc



 

LDAP authentication
● Single password not single signon

Client

PostgreSQL
Server

LDAP
Server

1. Connect

3. Send password
2. Request password



 

LDAP news in 9.0
● search/bind combination
● Can use non-cn fields in login

– Anything that's LDAP searchable
– Common choice: uid



 

RADIUS (new in 9.0)
● Remote Authentication Dial In User 

Service
● Simple single-packet UDP service
● Original use-case: ISP dialup
● Common for one-time passwords, etc
● Good policy frameworks



 

Kerberos/GSSAPI/SSPI
● Single signon
● Same benefits as LDAP (mostly)
● Most common: Active Directory

● («krb5» is deprecated)



 

Kerberos/GSSAPI/SSPI
● Single password not single signon

Client

PostgreSQL
Server

KDC

1. Request ticket
2. Return ticket

3. Present ticket



 

PAM
● Provided by OS
● Can do password, LDAP, etc
● Can also do Kerberos & friends
● One-time passwords

– RSA SecurID, Vasco, etc
– RADIUS (no need in 9.0)



 

SSL



 

SSL secured connections
● Encryption
● Man-in-the-middle protection
● Authentication



 

SSL secured connections
● Enabled on the server (ssl=yes)

– Platform quirks!

● Optionally required through 
pg_hba

● Optionally required in libpq



 

SSL secured connections
● Need to protect data in both 

directions
● For example username/password
● Must know before connection is 

started
– Unknown equals unprotected



 

SSL encryption
● SSL always requires a server 

certificate
● Can be self-signed
● Does not need to be known by 

client



 

Certificate chains

Issuer

Issuer

Issuer Root certificate

Intermediate certificate

Server certificate



 

Certificate chains

Issuer

Issuer

Issuer Root certificate

Intermediate certificate

Server certificate

Self-signed
certificate



 

SSL secured connections

Client Server



 

Threats handled by SSL: 
Eavesdropping

Client Server

SELECT * FROM secret_stuff



 

Eavesdropping
● Prevented by encrypting all data
● Key negotiation is automatic

– On initial connection
– After 512Mb traffic

● Server certificate used but not 
verified



 

Key renegotiation
● Broken in the SSL protocol – 

OOPS!
● Fixed SSL libraries are available
● Broken fixes were pushed by 

vendors
● ssl_renegotiation_limit = 512MB



 

Threats handled by SSL:
Man in the middle

Client Server

Fake server

Valid SSL session Valid SSL session



 

SSL server verification
● On top of encryption
● Validate that the server is who it 

claims to be
● CA issues certificate, can be self-

signed
● CA certificate known by client



 

Threats handled by SSL:
Man in the middle

Client Server

Fake server

Valid SSL session



 

SSL client authentication
● On top of encryption
● Normally on top of server 

verificateion, but not necessary
● CA issued certificate on client
● Match CN on certificate to user id
● Protect client certificate!



 

SSL client authentication

Client

PostgreSQL
Server

1. Present certific
ate



 

SSL client certificates
● Can also be used together with 

other authentication
● Require client certificate
● Also require e.g. 

username/password



 

SSL in libpq
● Controlled by sslmode parameter
● Or environment PGSSLMODE
● For security, must be set on client

– Remember, unknown = unsecure



 

Summary of libpq SSL modes

Protect against Compatible with server set 
to...

Performance

Client 
Mode

Eavesdrop MITM SSL required SSL disabled overhead

disable no no FAIL works no

allow no no works works If necessary

prefer no no works works If possible

require yes no works FAIL yes

verify-ca yes yes works FAIL yes

verify-full yes yes works FAIL yes



 

Summary of libpq SSL modes

Protect against Compatible with server set 
to...

Performance

Client 
Mode

Eavesdrop MITM SSL required SSL disabled overhead

disable no no FAIL works no

allow no no works works If necessary

prefer no no works works If possible

require yes no works FAIL yes

verify-ca yes yes works FAIL yes

verify-full yes yes works FAIL yes



 

Summary of libpq SSL modes

Protect against Compatible with server set 
to...

Performance

Client 
Mode

Eavesdrop MITM SSL required SSL disabled overhead

disable no no FAIL works no

allow no no works works If necessary

prefer no no works works If possible

require yes no works FAIL yes

verify-ca yes yes works FAIL yes

verify-full yes yes works FAIL yes



 

Summary of libpq SSL modes

Protect against Compatible with server set 
to...

Performance

Client 
Mode

Eavesdrop MITM SSL required SSL disabled overhead

disable no no FAIL works no

allow no no works works If necessary

prefer no no works works If possible

require yes no works FAIL yes

verify-ca yes yes works FAIL yes

verify-full yes yes works FAIL yes



 

Not a bad idea: ipsec
● If already deployed
● Application transparent
● Global policies
● Integrated management
● Somebody Elses Problem?



 

Secure PostgreSQL 
Deployments

Questions?

magnus@hagander.net
Twitter: @magnushagander

http://blog.hagander.net


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

